Statistical downscaling of climate change impacts on ozone concentrations in California

نویسندگان

  • Abdullah Mahmud
  • Mary Tyree
  • Dan Cayan
  • Nehzat Motallebi
  • Michael J. Kleeman
چکیده

[1] The statistical relationship between the daily 1-hour maximum ozone (O3) concentrations and the daily maximum upper air temperature was explored for California’s two most heavily polluted air basins: the South Coast Air Basin (SoCAB) and the San Joaquin Valley Air Basin (SJVAB). A coarse-scale analysis of the temperature at an elevation of 850-mbar pressure (T850) for the period 1980–2004 was obtained from the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis data set for grid points near Upland (SoCAB) and Parlier (SJVAB). Daily 1-hour maximum ozone concentrations were obtained from the California Air Resources Board (CARB) for these locations over the same time period. The ozone concentrations measured at any given value of the Reanalysis T850 were approximately normally distributed. The 25%, 50%, and 75% quartile ozone concentrations increased linearly with T850, reflecting the effect of temperature on emissions and chemical reaction rates. A 2D Lagrangian (trajectory) form of the UCD/CIT photochemical air quality model was used in a perturbation study to explain the variability of the ozone concentrations at each value of T850. Wind speed, wind direction, temperature, relative humidity, mixing height, initial concentrations for VOC concentrations, background ozone concentrations, time of year, and overall emissions were perturbed in a realistic fashion during this study. A total of 62 model simulations were performed, and the results were analyzed to show that long-term changes to emissions inventories were the largest sources of ozone variability at a fixed value of T850. Projections of future T850 values in California were obtained from the Geophysical Fluid Dynamics Laboratory (GFDL) model under the Intergovernmental Panel on Climate Change (IPCC) A2 and B1 emissions scenarios for the years 2001 to 2100. The future temperature trends combined with the historical statistical relationships suggest that an additional 22–30 days year 1 in California would experience O3 90 ppb under the A2 global emissions scenario, and an additional 6–13 days year 1 would experience O3 90 ppb under the B1 global emissions scenario by the year 2050 (assuming the NOx and VOC emissions remained at 1990–2004 levels). These calculations help to quantify the climate ‘‘penalty’’ that must be overcome to improve air quality in California.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in US

implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, e...

متن کامل

Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States

Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality tre...

متن کامل

Linking global to regional models to assess future climate impacts on surface ozone levels in the United States

[1] We investigate the impact of climate change on future air quality in the United States with a coupled global/regional scale modeling system. Regional climate model scenarios developed by dynamically downscaling outputs from the GISS GCM are used by CMAQ to simulate present air pollution climatology, and modeled surface ozone mixing ratios are compared with recent observations. Though the mo...

متن کامل

Evaluate the performance of SDSM model in different station and predict climate variables for future

According to the fourth report from the IPCC was confirmed climate change and its impacts on drought, floods, health problems and food shortages. Therefore, understanding of how climate change could be important in the management of resources, especially water resources management. Atmosphere-Ocean Global Circulation Models (AOGCM) are tools for predicting the future climate variables and it mu...

متن کامل

Attribution of projected changes in U.S. ozone and PM2.5 concentrations to global changes

The impact that changes in future climate, anthropogenic U.S. emissions, background tropospheric composition, and land-use have on regional U.S. ozone and PM2.5 concentrations is examined through a matrix of downscaled regional air quality simulations using the Community Multi-scale Air Quality (CMAQ) model. Projected regional scale changes in meteorology due to climate change under the Intergo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008